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Abstract
We investigate the morphology and kinetics of microphase separation of diblock
copolymers by means of a mode expansion method. In a weak segregation limit,
we employ two-wavenumber approximation to study the formation and stability
of a double gyroid structure and derive the phase diagram of the microphase
separated states. We have studied the kinetics of structural transitions due to
temperature change by solving the coupled set of amplitude equations for the
fundamental modes. We focus our attention on the morphological evolution
from a double gyroid to a lamellar structure and to a hexagonal structure.

Microphase separation of block copolymers has been studied both theoretically and
experimentally for many years. Various mesoscopic structures in equilibrium have been found,
such as a lamellar structure, a double gyroid structure, a hexagonal structure of cylindrical
domains, and a body centred cubic (BCC) structure of spherical domains [1, 2]. These
investigations have focused mainly, however, on the static properties of each mesophase.

Recently, several experiments have been performed on the structural transitions of
mesophases [3–5]. Lamellar–gyroid or cylinder–gyroid transitions have been investigated
by using scattering techniques and rheological measurements [6–8]. Similar experiments
for lamellar–cylinder transitions have been performed in triblock copolymers [9, 10]. The
kinetics and fluctuations of lamellar–gyroid transitions have also been investigated in non-
ionic surfactant systems [11–14].

In this letter, we shall report on the dynamics of structural transitions in diblock
copolymer melts. We start with the time-evolution equation for the local volume fraction of
monomers [15]. In the limit of weak segregation, we apply a mode expansion method [16, 17]
to derive a coupled set of equations for the amplitude of each fundamental mode. In the previous
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studies [16, 18], a single-wavenumber approximation was employed for lamellar, hexagonal
and BCC structures. Here, however, we are concerned with a double gyroid structure [19]
for which two-wavenumber approximation is necessary. The phase diagram for various
mesophases is obtained by evaluating the equilibrium solutions of the amplitude equations.
Furthermore, the structural evolution from a double gyroid to a lamellar structure and to
a hexagonal structure is investigated by solving numerically the amplitude equations. The
stability of mesophases without including a double gyroid has been analysed theoretically [20].
Structural transitions omitting a double gyroid have also been studied [17, 18, 21]. The
cylinder-to-gyroid transition has been discussed based on the free-energy surface without
solving the dynamics directly [22]. In these aspects, to the authors’ knowledge, the kinetics
of morphological transitions from a double gyroid to other structures have until now not been
studied theoretically.

We start with the free energy functional for A–B type diblock copolymers [23]. Imposing
the incompressibility condition φA(�r) + φB(�r) = 1, where φA(φB) is the local volume fraction
of A(B) monomers, the free-energy functional can be written in terms of the local volume
fraction difference φ = φA − φB as

F[φ] =
∫

d�r
[

1

2
(∇φ)2 + W (φ)

]
+

α

2

∫
d�r d�r ′ G(�r , �r ′)(φ(�r) − φ̄)(φ(�r ′) − φ̄), (1)

where

W (φ) = −τ

2
φ2 +

g

4
φ4, (2)

−∇2G = δ(�r − �r ′). (3)

The coefficients α and g are positive constants and φ̄ stands for the spatial average of φ.
The parameter τ is negative for the high-temperature uniform phase, whereas it is positive for
the microphase-separated state at low temperature.

The time-evolution equation for φ is given by [15]

∂φ

∂ t
= ∇2 δF

δφ
= ∇2(−∇2φ − τφ + gφ3) − α(φ − φ̄), (4)

where we have ignored the possible non-local effect in the mobility and it has been set to unity.
This equation has been used for numerical simulations to study the kinetics of microphase sepa-
ration in two dimensions [15]. Quite recently, Teramoto and Nishiura [24] have shown,by using
three-dimensional simulations, that equation (4) has a double gyroid structure as a stable equi-
librium solution in a certain parameter region. In their study, however, the simulations were car-
ried out in a small system where the system size was the equilibrium period of a double gyroid.

In this letter, we do not perform direct simulations of equation (4). Since morphological
transitions of a double gyroid to other structures are generally accompanied by a change of
equilibrium period, one has to provide a sufficiently large system to eliminate the finite size
effects. However, this is technically demanding in three dimensions. Therefore, we use the
mode expansion approach to derive the time-evolution equations for the amplitude of the
relevant modes.

It is well known that a double gyroid structure can be approximated by the following level
set equation:

0 = 8(1 − s)[sin 2x sin z cos y + sin 2y sin x cos z + sin 2z sin y cos x]

− 4s[cos 2x cos 2y + cos 2y cos 2z + cos 2z cos 2x] − t, (5)

where s and t are the parameters [25]. The relations with the physical quantities will be given
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below equation (8). Using equation (5), we expand φ as

φ(�r , t) = φ̄ +

[ 12∑
i=1

ai(t)e
i�qi ·�r +

6∑
i=1

bi (t)e
i �pi ·�r + c.c.

]
, (6)

where ai and bi are real amplitudes, c.c. means complex conjugate, and the fundamental
reciprocal vectors �qi and �p j for a double gyroid are defined by

�q1 = CQ(2,−1, 1) �q2 = CQ(−2, 1, 1) �q3 = CQ(2, 1,−1)

�q4 = CQ(2, 1, 1) �q5 = CQ(1, 2,−1) �q6 = CQ(1,−2, 1)

�q7 = CQ(−1, 2, 1) �q8 = CQ(1, 2, 1) �q9 = CQ(−1, 1, 2)

�q10 = CQ(1, 1,−2) �q11 = CQ(1,−1, 2) �q12 = CQ(1, 1, 2)

�p1 = CP(2, 2, 0) �p2 = CP (2,−2, 0) �p3 = CP (0, 2, 2)

�p4 = CP (0, 2,−2) �p5 = CP(2, 0, 2) �p6 = CP(−2, 0, 2),

(7)

with CQ = Q/
√

6 and CP = P/(2
√

2). To make equation (6) identical with equation (5) for
a double gyroid, we note the relation

Q2 = 3
4 P2. (8)

In the spirit of the mode expansion, we shall impose this not only in equilibrium but
also during the structural transition. A gyroid structure is expressed as |ai | = ag �= 0 and
|b j | = bg �= 0 (i = 1, . . . , 12; j = 1, . . . , 6). If one defines the iso-surface given by φ = 0,
the constants ag, bg and φ̄ are related to s and t in equation (5) as ag = c(1 − s), bg = −cs
and φ̄ = −ct with an arbitrary constant c. A lamellar structure and a hexagonal structure can
be obtained as a special case. For example, if only a1 is finite, then it expresses a lamellar
structure and if only a2, a6 and a10 are finite with the same magnitude, then it expresses a
hexagonal structure. A BCC structure cannot be expressed by the 12 modes of ai . (It can be
represented by using the bi modes.) However, since we are not concerned with the transition
from a double gyroid to a BCC structure, we do not go into the further details of this.

The vectors shown in (7) are obtained easily by comparing (5) with (6). It is noted that
they are not independent but satisfy some relations. Several examples are listed as

�q1 − �q4 − �q11 + �q12 = 0 �q5 + �q6 + �q7 − �q8 = 0

�q2 + �q7 − �q9 + �p2 = 0 �q3 + �q6 + �q9 − �p5 = 0

�p1 − �p2 − �p3 − �p4 = 0 �q1 + �q3 − �p1 − �p2 = 0

�q2 + �q4 − �p3 = 0 �q1 + �q7 − �q12 = 0 �p2 + �p3 − �p5 = 0.

(9)

The expansion (6) neither takes account of the spatial variation of the amplitudes nor contains
the phase variable, since the amplitudes are assumed to be real. In the present approach,
therefore, nucleation and growth of localized new structures cannot be investigated. However,
our main concern is the domain evolution in the transitions from a double gyroid. Such a study,
although it would clarify the fundamental mechanism of structural evolutions, has so far not
been carried out intensively. If one considers the elastic effect of the mesoscopic structures,
then the phase variable must be introduced. However, when there are 18 modes, as in the
present method, this generalization is not easy and is left for a future study.

Substituting equation (6) into equation (4) and ignoring the higher harmonics, which is
justified in the weak segregation limit, we obtain a set of coupled equations for the amplitudes.
For instance, equation for a1 is given by

da1

dt
= (−Q4 + τ Q2 − α)a1 − 3gQ2

[
(φ̄2 − a1

2)a1 + 2

( 12∑
i=1

ai
2 +

6∑
j=1

b j
2

)
a1
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+ 2(φ̄a3b4 + φ̄a7a12 + a1b2b5 + a2a3a4 + a2a5a8 + a2a6a7 + a3b1b2

+ a3b1b5 + a3b2b6 + a3b5b6 + a4a9a10 + a4a11a12 + a5a10b2 + a5a10b5

+ a5a12b6 + a6a9b3 + a6a9b6 + a6a11b2 + a6a11b4 + a6a11b5 + a7a10b1

+ a8a9b4 + a8a11b1 + a8a11b3)

]
. (10)

Similarly, the free energy (1) can also be written in terms of ai , bi and P as

Famp = F({ai}, {bi}, P). (11)

Since it is lengthy, we do not write down its whole expression. The part which depends on P
is given by

Fnl =
(

3

4
P2 +

4α

3P2

) 12∑
i=1

ai
2 +

(
P2 +

α

P2

) 6∑
i=1

bi
2, (12)

where we have used the relation (8). The equilibrium value of P is obtained by the variation
of (12) with respect to P . To see the time evolution of the period, we employ relaxation
dynamics for the wavenumber:

dP2

dt
= −h

∂ Famp

∂ P2
= −h

[(
3

4
− 4α

3P4

) 12∑
i=1

ai
2 +

(
1 − α

P4

) 6∑
j=1

b j
2

]
, (13)

where h is a positive constant.
To explore the equilibrium structures and kinetics of transitions between the different

structures, we have carried out numerical simulations of the coupled set of equations for
ai , bi and equation (13). The stable equilibrium structures are obtained, starting with a
disordered state where ai = bi = 0 with small random numbers imposed. The time
increment is set as 0.01. We have fixed the parameters as α = g = h = 1. An example
of the domain evolution is shown in figure 1 for τ = 2.2 and φ̄ = −0.1, where a double
gyroid structure is formed asymptotically. The final values of the amplitudes are given by
a1 = a2 = a5 = a6 = a11 = a12 = −0.064 56, a3 = a4 = a7 = a8 = a9 = a10 = 0.064 56
and bi = −0.023 53 (i = 1, . . . , 6). We have performed simulations by changing the
parameters τ and φ̄ to evaluate the free energy (11) for each structure. In this way, we
obtain the phase diagram in τ–φ̄ plane displayed in figure 2. The full, dotted and broken
curves in this figure indicate the phase boundaries between lamellae and hexagons, between
hexagons and BCC, and between BCC and the disordered state, respectively, which were
obtained analytically by means of the single-wavenumber expansion [18]. We have found that
there are several other stable solutions in the amplitude equations. The free energies for such
structures are higher than those in figure 2 and therefore they are only metastable. The phase
diagram, including the double gyroid phase shown in figure 2, is consistent with the previous
ones [2, 26, 27].

Now we study the kinetics of the morphological transitions. Since these structural
transitions are first order, we must add random forces to the amplitude equations for ai and bi

to initiate the transitions. The random force is not added to equation (13). Figure 3 shows the
structural evolution from the double gyroid to a hexagonal structure. Initially we provide a
double gyroid structure for τ = 2.4 and φ̄ = −0.17 and then change the value of τ to τ = 2.1.
The initial values of the amplitudes are a1 = a4 = a5 = a8 = a9 = a12 = −0.090 38,
a2 = a3 = a6 = a7 = a10 = a11 = 0.090 38 and bi = −0.040 49 (i = 1, . . . , 6). The
magnitude of the random forces is chosen to be 0.05. Deformation and rupture of domains are
clearly seen in figure 3. The final nonzero amplitudes for the hexagonal structure are given by
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t=0 t=45

t=75 t=150

Figure 1. The formation of a double gyroid for τ = 2.2 and φ̄ = −0.1, starting from the disordered
state.

-0.25 -0.2 -0.15 -0.1 -0.05 0φ

τ

2

2.1

2.2

2.3

2.4

2.5

Figure 2. Phase diagram. The region indicated by white circles, black triangles, white squares and
black circles is the stable phase of lamellae, hexagons, double gyroid and BCC, respectively.

a4 = a5 = −a11 = −0.079 20. This means that the cylindrical axis of the hexagons is parallel
to the (−1, 1, 1) direction.

The morphological transition from a double gyroid to a lamellar structure is shown in
figure 4, where φ̄ = −0.1 and τ is changed from τ = 2.2 to 2.5. The magnitude of the
random forces is chosen in this case to be 0.26. This fairly large random force is necessary,
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t=0 t=21

t=70 t=140

Figure 3. The structural evolution from a double gyroid to a hexagonal structure for φ̄ = −0.17
and τ = 2.1.

otherwise the transition from double gyroid is not triggered within an accessible simulation
time. The initial amplitudes are set to be a1 = a4 = a5 = a8 = a9 = a12 = −0.064 56,
a2 = a3 = a6 = a7 = a10 = a11 = 0.064 56 and bi = −0.023 53 (i = 1, . . . , 6). The final
nonzero amplitude is a11 = 0.3958. Comparing with figure 3, one finds that the transition
from a double gyroid to a lamellar structure is quite slow. The initial double gyroid structure
persists for a long period up to about t = 26 400 and then changes to a transient structure
given by a2 = −a4 = 0.079 18, a5 = −a6 = −a10 = −a11 = −0.1730, b3 = 0.059 70 and
the other vanishing amplitudes. After spending time in the intermediate state of the transition
process, it changes to the final lamellar structure. It is found that this transient structure is close
to one of the metastable solutions of the amplitude equations and that this is different from
the so-called perforated lamellar structure [6, 28]. Note that the gyroid-to-cylinder transition
shown in figure 3 does not exhibit any apparent intermediate structure.

In summary, we have studied the morphological transitions in microphase separation in
diblock copolymer melts. Despite its simplicity, we have confirmed that the free energy (1)
admits a double gyroid solution which is indeed the most stable structure in a finite parameter
regime among the solutions of the amplitude equations found numerically. In order to verify
its absolute stability, we need to look for all the stationary solutions of the amplitude equation.
However, this is a difficult task and is not explored here. By extending the mode expansion
method to take account of two kinds of fundamental wavevectors, we have shown—for the first
time—the dynamics of the transition from a double gyroid to a lamellar structure as well as to a
hexagonal structure. Since the double gyroid does not exist in the strong segregation region [2],
this mode expansion valid in the weak segregation limit is a consistent approximation in the
present theory.
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t=0 t=26320

t=38200 t=40000

Figure 4. The structural evolution from a double gyroid to a lamellar structure for φ̄ = −0.1 and
τ = 2.5.

It is emphasized that the equilibrium value of P2 = 4/3 for α = 1 in the single-
wavenumber approximation cannot be used for a double gyroid structure. This approximation
makes the stable region of a double gyroid structure vanish in the phase diagram. Therefore,
although the difference from P2 = 4/3 is quite small, we must use the proper equilibrium
value P2 ≈ 1.30, which is given by the solution of equation (13) and is insensitive to the
values of τ and φ̄. This implies that, when one studies the transition between a double gyroid
and other structures, the change of the period must be taken properly into account.

An insufficient aspect of the present method is that we have no systematic way of deriving
the equation for P . In the theory described above, we have used equation (13) simply given
by the variation of the free energy. We have verified at least that the kinetics and the domain
morphology during the transitions are not altered qualitatively by changing the magnitude
of the coefficient h. Since the phase diagram tells us the parameters where a double gyroid
exists, we may carry out simulations of equation (4) directly for the kinetics of transitions.
These results, together with further systematic study of morphological transitions,will be given
elsewhere in the near future.

We are grateful to T Teramoto and Y Nishiura for valuable discussions. This work was
supported by Grant-in-Aid of the Ministry of Education, Science and Culture of Japan.
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